Análisis de la piel con IA para líneas de expresión

Ayude a sus clientes a conocer el nivel de calificación de las líneas finas de su rostro y obtenga recomendaciones personalizadas de productos mediante la integración de la herramienta de análisis de piel con IA de GlamAR.

Recomendaciones personalizadas de productos

Customers can receive personal product recommendations to improve the fine lines and other skin issues. The GlamAR's AI skin analysis tool will recommend suitable skincare products based on the skin analysis report. The tool also has a skin tracking journey with GlamAR to track the progress of the skincare treatment
ar icono
ar icono

Suitable for e-commerce integration

You can integrate GlamAR's AI skin analysis SDK into your live app or website. Through this, your customers can access it by using a live camera from their web, Android, or iOS device. With this, they will be able to get and know the skin rating score of their facial fine lines

Informe personalizado sobre la piel

The GlamAR's AI skin analysis can analyze over 14+ skin issues, including skin lines. The AI tool will scan their real-time facial appearance to analyze for possible skin issues, including the patterns of the fine lines. Afterward, it will present an overall skin score of the user, which includes the skin age number, skin type, and skin tone. Also, it will present a well-detailed skin score of the depth of the fine lines alongside other skin issues in real time
ar icono

Preguntas más frecuentes

An AI analysis for skin lines is a skincare-based software tool that can scan for skin lines, wrinkles, and other skin issues. This tool checks using an uploaded or scanned facial appearance to find any sign of skin issues, provides a skin rating score, and also recommends skincare products. Based on the analysis, it generates personalized skincare reports and suggests product recommendations and the possible outcomes to expect after engaging with those products in real time.

The tool uses AI-driven tech, computer vision, and deep learning machines. It can scan the users’ facial appearance to detect skin issues such as pigmentation, dark spots, whiteheads, eye bags, fine lines, and other related issues. The tool starts by scanning the patterns of fine lines and afterward, highlights the affected area. After this process, the tool generates a personalized skin rating score report for your users. It will also recommend personalized skincare products to help improve their skin issues.

Users may face some challenges in using AI skin analysis for skin lines due to poor image quality or uneven lighting, which will affect the authenticity of the analysis results. The major challenges for brands are in protecting customers' photos and their personal information. Brands might need to follow some strict ethical and cyber rules and regulations while implementing the AI tools.

It depends. Certain factors can stand as determinants of whether the report of the AI skin analysis will be accurate or not. Such examples are the lighting conditions, the quality of the camera lens of the user's device, the quality of the image uploaded, and the internet connection coverage of the user's device network. The majority of the AI skin analysis SDK engine uses a dermatology-based dataset, which has been tested on thousands of training images.

Generally, the AI skin analysis enables users to scan and analyze their skin for possible defects. After this, the tool tends to suggest some of your products that can improve those defects for them. Hence, your customers will get personalized product recommendations based on their skin needs. Also, brands can gather customer data from the analysis tool to improve their products and other offerings. This data will help brands to know the exact products that are bringing more sales and, hence, tend to generate more of them for productivity.

All skin analysis accuracy thrives on the quality of the image uploaded. If the image uploaded is blurry or not clear enough, the result tends not to be accurate or fail. The uploaded image should be an image with good lighting, no makeup if possible, taken with a good camera lens. The face of the customer must also be centered and be forward-looking. This will help the AI for proper scanning and accurate analysis.

Descubre cómo la RA, la RV y el 3D pueden impulsar el crecimiento de los ingresos en 2025

Concierte una llamada con nuestro equipo

Descubre cómo la RA, la RV y el 3D pueden impulsar el crecimiento de los ingresos en 2025
Con la confianza de marcas mundiales
foxtalefoxtale
foxtalefoxtale
Respaldado por seguridad y escalabilidad de nivel empresarial
imagen acipaimagen gdprimagen iso
Concierte una llamada con nuestro equipo
Número válido Introduzca un número de teléfono válido
Esto es un texto dentro de un bloque div.
flecha abajo
insertpageurl
insertpageurl
Al facilitarnos sus datos, usted acepta que los recopilemos y utilicemos de acuerdo con nuestras Condiciones de servicio y Política de privacidad.
consulte
Gracias por programar su llamada de demostración
Muchas gracias. Hemos recibido su envío.
¡Uy! Algo ha ido mal al enviar el formulario.
Con la confianza de marcas mundiales
foxtalefoxtale
foxtalefoxtale
Respaldado por seguridad y escalabilidad de nivel empresarial
imagen del aicpaimagen gdprimagen iso